Model Answer of Final Exam

Answer of Question (1)

[a]

Let A_{1} be the event " 4,5 or 6 on first toss," and A_{2} be the event " $1,2,3$ or 4 on second toss." Then we are looking for $P\left(A_{1} \cap A_{2}\right)$.

Method 1.

$$
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right)=P\left(A_{1}\right) P\left(A_{2}\right)=\left(\frac{3}{6}\right)\left(\frac{4}{6}\right)=\frac{1}{3}
$$

We have used here the fact that the result of the second toss is independent of the first so that $P\left(A_{2} \mid A_{1}\right)=P\left(A_{2}\right)$. Also we have used $P\left(A_{1}\right)=3 / 6$ (since 4,5 or 6 are 3 out of 6 equally likely possibilities) and $P\left(A_{2}\right)=4 / 6$ (since $1,2,3$ or 4 are 4 out of 6 equally likely possibilities).

Method 2.

Each of the 6 ways in which a die can fall on the first toss can be associated with each of the 6 ways in which it can fall on the second toss, a total of $6 \cdot 6=36$ ways, all equally likely.

Each of the 3 ways in which A_{1} can occur can be associated with each of the 4 ways in which A_{2} can occur to give $3 \cdot 4=12$ ways in which both A_{1} and A_{2} can occur. Then

$$
P\left(A_{1} \cap A_{2}\right)=\frac{12}{36}=\frac{1}{3}
$$

(a)

$$
\begin{aligned}
P(1) & =P(1 \cap H \text { or } 1 \cap S \text { or } 1 \cap D \text { or } 1 \cap C) \\
& =P(1 \cap H)+P(1 \cap S)+P(1 \cap D)+P(1 \cap C) \\
& =\frac{1}{52}+\frac{1}{52}+\frac{1}{52}+\frac{1}{52}=\frac{1}{13}
\end{aligned}
$$

This could also have been achieved from the sample space of Problem $1.10(\alpha)$ where each sample point, in particular "ace," has probability $1 / 13$. It could also have been arrived at by simply reasoning that there are 13 numbers and so each has probability $1 / 13$ of being drawn.
(b) $P(11 \cap H)=\frac{1}{52}$
(c) $P(3 \cap C$ or $6 \cap D)=P(3 \cap C)+P(6 \cap D)=\frac{1}{52}+\frac{1}{52}=\frac{1}{26}$
(d) $P(H)=P(1 \cap H$ or $2 \cap H$ or $\ldots 13 \cap H)=\frac{1}{52}+\frac{1}{52}+\cdots+\frac{1}{52}=\frac{13}{52}=\frac{1}{4}$

This could also have been arrived at by noting that there are four suits and each has equal probability $\frac{1}{4}$ of being drawn.
(e) $P\left(H^{\prime}\right)=1-P(H)=1-\frac{1}{4}=\frac{3}{4} \quad$ using part (d) and Theorem 1-17, page 6.
(f) Since 10 and S are not mutually exclusive we have from Theorem 1-19

$$
P(10 \cup S)=P(10)+P(S)-P(10 \cap S)=\frac{1}{13}+\frac{1}{4}-\frac{1}{52}=\frac{4}{13}
$$

(g) The probability of neither four nor club can be denoted by $P\left(4^{\prime} \cap C^{\prime}\right)$. But by Theorem 1-12(α), page $3,4^{\prime} \cap C^{\prime}=(4 \cup C)^{\prime}$. Thus

$$
\begin{aligned}
P\left(4^{\prime} \cap C^{\prime}\right)=P\left[(4 \cup C)^{\prime}\right] & =1-P(4 \cup C) \\
& =1-[P(4)+P(C)-P(4 \cap C)] \\
& =1-\left[\frac{1}{13}+\frac{1}{4}-\frac{1}{52}\right]=\frac{9}{13}
\end{aligned}
$$

Answer of Question (2)

[a]

(a) We must have $\int_{-\infty}^{x} f(x) d x=1$, i.e.

$$
\int_{-\infty}^{\infty} \frac{c d x}{x^{2}+1}=\left.c \tan ^{-1} x\right|_{-\infty} ^{\infty}=c\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=1
$$

so that $c=1 / \pi$.
(b) If $\frac{1}{3} \leqq X^{2} \leqq 1$, then either $\frac{\sqrt{3}}{3} \leqq X \leqq 1$ or $-1 \leqq X \leqq-\frac{\sqrt{3}}{3}$. Thus the required probability is

$$
\begin{aligned}
\frac{1}{\pi} \int_{-1}^{-\sqrt{3} / 3} \frac{d x}{x^{2}+1}+\frac{1}{\pi} \int_{\sqrt{3} / 3}^{1} \frac{d x}{x^{2}+1} & =\frac{2}{\pi} \int_{\sqrt{3} / 3}^{1} \frac{d x}{x^{2}+1} \\
& =\frac{2}{\pi}\left[\tan ^{-1}(1)-\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)\right] \\
& =\frac{2}{\pi}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\frac{1}{6}
\end{aligned}
$$

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-14. The probabilities associated with these points, given by $c(2 x+y)$, are shown in Table 2-6. Since the grand total, $42 c$, must equal 1 , we have $c=1 / 42$.

Table 2-6

Y	0	1	2	3	Totals \downarrow
0	0	c	$2 c$	$3 c$	$6 c$
1	$2 c$	$3 c$	$4 c$	$5 c$	$14 c$
2	$4 c$	$5 c$	$6 c$	$7 c$	$22 c$
Totals \rightarrow	$6 c$	$9 c$	$12 c$	$15 c$	$42 c$

Fig. 2-14
(b) From Table 2-6 we see that

$$
P(X=2, Y=1)=5 c=\frac{5}{42}
$$

(c) From Table 2-6 we see that

$$
\begin{aligned}
P(X \geqq 1, Y \leqq 2) & =\sum_{x \geqq 1} \sum_{y \leqq 2} f(x, y) \\
& =(2 c+3 c+4 c)+(4 c+5 c+6 c) \\
& =24 c=\frac{24}{42}=\frac{4}{7}
\end{aligned}
$$

as indicated by the entries shown shaded in the table.

Answer of Question (3)

[a]
(a)

$$
E\left(X^{*}\right)=E\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma}[E(X-\mu)]=\frac{1}{\sigma}[E(X)-\mu]=0
$$ since $E(X)=\mu$.

(b)

$$
\operatorname{Var}\left(X^{*}\right)=\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} E\left[(X-\mu)^{2}\right]=1
$$

[b]
(a)

$$
\begin{aligned}
E(X) & =\sum_{x} \sum_{y} x f(x, y)=\sum_{x} x\left[\sum_{y} f(x, y)\right] \\
& =(0)(6 c)+(1)(14 c)+(2)(22 c)=58 c=\frac{58}{42}=\frac{29}{21}
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(Y) & =\sum_{x} \sum_{y} y f(x, y)=\sum_{y} y\left[\sum_{x} f(x, y)\right] \\
& =(0)(6 c)+(1)(9 c)+(2)(12 c)+(3)(15 c)=78 c=\frac{78}{42}=\frac{13}{7}
\end{aligned}
$$

(c)

$$
E(X Y)=\sum_{x} \sum_{y} x y f(x, y)
$$

$$
=(0)(0)(0)+(0)(1)(c)+(0)(2)(2 c)+(0)(3)(3 c)
$$

$$
+(1)(0)(2 c)+(1)(1)(3 c)+(1)(2)(4 c)+(1)(3)(5 c)
$$

$$
+(2)(0)(4 c)+(2)(1)(5 c)+(2)(2)(6 c)+(2)(3)(7 c)
$$

$$
=102 c=\frac{102}{42}=\frac{17}{7}
$$

(d)

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{x} \sum_{y} x^{2} f(x, y)=\sum_{x} x^{2}\left[\sum_{y} f(x, y)\right] \\
& =(0)^{2}(6 c)+(1)^{2}(14 c)+(2)^{2}(22 c)=102 c=\frac{102}{42}=\frac{17}{7}
\end{aligned}
$$

(e) $\quad E\left(Y^{2}\right)=\sum_{x}{\underset{y}{y}} y^{2} f(x, y)={\underset{y}{y}} y^{2}\left[\underset{x}{\sum} f(x, y)\right]$

$$
=(0)^{2}(6 c)+(1)^{2}(9 c)+(2)^{2}(12 c)+(3)^{2}(15 c)=192 c=\frac{192}{42}=\frac{32}{7}
$$

(f)

$$
\sigma_{X}^{2}=\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{17}{7}-\left(\frac{29}{21}\right)^{2}=\frac{230}{441}
$$

(g)

$$
\sigma_{Y}^{2}=\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{32}{7}-\left(\frac{13}{7}\right)^{2}=\frac{55}{49}
$$

Answer of Question (4)

[a]
(a) Weights recorded as being between 120 and 155 lb can actually have any value from 119.5 to 155.5 lb , assuming they are recorded to the nearest pound.

$$
\begin{aligned}
119.5 \mathrm{lb} \text { in standard units } & =(119.5-151) / 15 \\
& =-2.10 \\
155.5 \mathrm{lb} \text { in standard units } & =(155.5-151) / 15
\end{aligned}
$$

$$
\begin{aligned}
\text { Required proportion of students }= & \text { (area between } z=-2.10 \text { and } z=0.30) \\
= & \text { (area between } z=-2.10 \text { and } z=0) \\
& + \text { (area between } z=0 \text { and } z=0.30) \\
= & 0.4821+0.1179=0.6000
\end{aligned}
$$

Then the number of students weighing between 120 and 155 lb is $500(0.6000)=300$.
(b) Students weighing more than 185 lb must weigh at least 185.5 lb .

$$
185.5 \mathrm{lb} \text { in standard units }=(185.5-151) / 15=2.30
$$

Required proportion of students
$=$ (area to right of $z=2.30$)
$=($ area to right of $z=0)$

- (area between $z=0$ and $z=2.30$)
$=0.5-0.4893=0.0107$
Then the number of students weighing more than 185 lb is $500(0.0107)=5$.

Fig. 4-13

If W denotes the weight of a student chosen at random, we can summarize the above results in terms of probability by writing

$$
P(119.5 \leqq W \leqq 155.5)=0.6000 \quad P(W \geqq 185.5)=0.0107
$$

[b]
(a) Let X be the random variable giving the number of heads in 10 tosses. Then

$$
\begin{array}{ll}
P(X=3)=\binom{10}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{7}=\frac{15}{128} & P(X=4)=\binom{10}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{6}=\frac{105}{512} \\
P(X=5)=\binom{10}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=\frac{63}{256} & P(X=6)=\binom{10}{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{4}=\frac{105}{512}
\end{array}
$$

Then the required probability is

$$
P(3 \leqq X \leqq 6)=\frac{15}{128}+\frac{105}{512}+\frac{63}{256}+\frac{105}{512}=\frac{99}{128}=0.7734
$$

(b) The probability distribution for the number of heads in 10 tosses of the coin is shown graphically in Figures 4-15 and 4-16, where Fig. 4-16 treats the data as if they were continuous. The required probability is the sum of the areas of the shaded rectangles in Fig. 4-16 and can be approximated by the area under the corresponding normal curve, shown dashed. Treating the data as continuous, it follows that 3 to 6 heads can be considered as 2.5 to 6.5 heads. Also, the mean and variance for the binomial distribution are given by $\mu=n p=10\left(\frac{1}{2}\right)=5$ and $\sigma=\sqrt{n p q}=\sqrt{(10)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}=1.58$. Now

$$
\begin{aligned}
& 2.5 \text { in standard units }=(2.5-5) / 1.58=-1.58 \\
& 6.5 \text { in standard units }=(6.5-5) / 1.58=0.95
\end{aligned}
$$

Required probability
$=($ area between $z=-1.58$ and $z=0.95)$
$=($ area between $z=-1.58$ and $z=0)$

$$
+(\text { area between } z=0 \text { and } z=0.95)
$$

$=0.4429+0.3289=0.7718$
which compares very well with the true value 0.7734 obtained in part (α). The accuracy is even better for larger values of n.

Fig. 4-17

Answer of Question (5)

The normal equations are
(1)

$$
\begin{aligned}
& \Sigma y=a n+b \Sigma x+c \Sigma x^{2} \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \\
& \Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4}
\end{aligned}
$$

The work involved in computing the sums can be arranged as in Table 8-9.
Table 8-9

x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
1.2	4.5	1.44	1.73	2.08	5.40	6.48
1.8	5.9	3.24	5.83	10.49	10.62	19.12
3.1	7.0	9.61	29.79	92.35	21.70	67.27
4.9	7.8	24.01	117.65	576.48	38.22	187.28
5.7	7.2	32.49	185.19	1055.58	41.04	233.93
7.1	6.8	50.41	357.91	2541.16	48.28	342.79
8.6	4.5	73.96	636.06	5470.12	38.70	332.82
9.8	2.7	96.04	941.19	9223.66	26.46	259.31
$\Sigma x=$	$\Sigma y=$	$\Sigma x^{2}=$	$\Sigma x^{3}=$	$\Sigma x^{4}=$	$\Sigma x y=$	$\Sigma x^{2} y=$
42.2	46.4	291.20	2275.35	$18,971.92$	230.42	1449.00

Then the normal equations (1) become, since $n=8$,

$$
\begin{aligned}
& 8 a+42.2 b+291.20 c=46.4 \\
& 42.2 a+291.20 b+2275.35 c=230.42 \\
& 291.20 a+2275.35 b+18971.92 c=1449.00
\end{aligned}
$$

Solving, $a=2.588, b=2.065, c=-0.2110$; hence the required least-squares parabola has the equation

$$
y=2.588+2.065 x-0.2110 x^{2}
$$

